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The Citric Acid Cycle

Citrate Synthase V. Step 1: C-C bond formation between acetate (2C) and
oxaloacetate (4C) to make citrate (6C)
+ Step 2: Isomerization via dehydration/rehydration
+ Steps 3—4: Oxidative decarboxylations to give 2 NADH
+ Step 5: Substrate-level phosphorylation to give GTP
+ Step 6: Dehydrogenation to give FADH,
+ Step 7: Hydration
+ Step 8: Dehydrogenation to give NADH
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The Citric Acid Cycle: Aconitase
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— Citrate, a tertiary alcohol, is a poor substrate for oxidation.
— Isocitrate, a secondary alcohol, is a good substrate for oxidation.  the citrate synthase reaction with Hz150

- Thermodynamically unfavorable/reversible (AG® = +3.2 kcal/mol)
— product concentration kept low to pull forward; citrate tends to “pool” with higher conc.

+ Dehydration & Addition of H20 to cis-aconitate is stereospecific.

— This was initially very confusing to bio/organic chemists
— Only R-isocitrate is produced by aconitase.
— A biochemist names A.G. Ogston clarified the situation by realizing that the enzyme
spatially templates this symmetrical molecule by binding in only one way (e.g., clockwise
or counter clockwise, not both)
— Distinguished by three-point attachment to the active site
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3-point attachment; prochirality
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The Citric Acid Cycle: Aconitase

Iron-Sulfur Center in Aconitase
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Iron-Sulfur Center in Aconitase
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The Citric Acid Cycle: Aconitase
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Most Iron-sulfur are
involved in re-dox
reactions (without
proton transfers). In
aconitase, the role
is very different.

Hydrogenase: H, > 2H*

The Citric Acid Cycle: Aconitase

Water removal from citrate and subsequent addition to cis-aconitate are
catalyzed by the iron-sulfur center: sensitive to oxidative stress.

Mechanism
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studies have
shown that the
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solvent (the same
—OH removed is
not held by the
Fe-S cluster and
added back).




The Citric Acid Cycle: Aconitase

Water removal from citrate and subsequent addition to cis-aconitate are
catalyzed by the iron-sulfur center: sensitive to oxidative stress.

Isocitrate [Isotope exchange
studies have

shown that the
hydroxyl is lost to
solvent (the same
—OH removed is
not held by the
Fe-S cluster and
added back).

CIOO =

Isotope exchange studies
have shown that the proton
is the same and goes from
C3to C2.

sp2 carbon; attack of activated
hydroxyl from solvent is liganded
to Fe can only occur from one
side, not the other.
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Isomerization by Dehydration/Rehydration
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The Citric Acid Cycle
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The Citric Acid Cycle

Citrate Synthase V. Step 1: C-C bond formation between acetate (2C) and
oxaloacetate (4C) to make citrate (6C)
Aconitase V. Step 2: Isomerization via dehydration/rehydration
+ Steps 3—4: Oxidative decarboxylations to give 2 NADH
+ Step 5: Substrate-level phosphorylation to give GTP
+ Step 6: Dehydrogenation to give FADH,
+ Step 7: Hydration
+ Step 8: Dehydrogenation to give NADH
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The Citric Acid Cycle: Isocitrate
dehydrogenase
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« Converting the C2 hydroxyl to a keto destabilizes the C-C bond
to the carboxylate at C3 (C-C bond B-to carbonyl).

* This requires a 2-step process:
—First perform an alcohol-to-keto dehydrogenation at C2 using NAD*
—Second, using carbonyl, allow for decarboxylation (the oxidation of the
carboxylate to CO,, with the reduction of C3).
—C2 is oxidized, C3 is reduced, Carboxylate is oxidized: Net oxidation is 2e~
* Isozymes are specific for NADP* (cytosolic) or NAD*

(mitochondrial).
« Favorable but irreversible due to loss of CO, (AG“ =-2.0 kcal/mol)
+ Regulated by [ATP] (OMSGAP)

The Citric Acid Cycle: Isocitrate
dehydrogenase ... .
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The Citric Acid Cycle: The o-Keto-
Glutarate Dehydrogenase Complex

Oxidative Decarboxylation of an a-keto acid: a-Ketoglutarate
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+ Second oxidative decarboxylation in TCA cycle
— full oxidation of all carbons of glucose:
+ Takes two turns of the cycle

+ The carbons oxidized are not directly from glucose because the carbons came from
oxaloacetate, not acetyl-CoA

* Requires TPP, FAD, Lipoic acid cofactors
+ Succinyl-CoA has another higher-energy thioester bond.

« Highly thermodynamically favorable/irreversible (AG< =-8.0 kcal/mol)
— regulated by product inhibition

Where have we
seen this before?

The Citric Acid Cycle: The a-Keto-
Glutarate Dehydrogenase Complex

Pyruvate dehydrogenase Citric acid cycle (a-KG D HC)
complex
ﬁ !
CH;—C—C00™ “00C—CH,—CH,—C—C00"
Pyruvate a-Ketoglutarate
TPP HS-CoA TPP ———y
oic ac /wap+  Lipoic acid NAD*
Lipoic acid AL p co, </
EAD 0, “N., NABH FAD 2 NADH
< P
CH;—C ~00C—CH,—CH,—C
S-CoA S-CoA
Acetyl-CoA Succinyl-CoA (OMSGAP

+ Complex similar to pyruvate dehydrogenase
— same coenzymes, identical mechanisms, E2 & E3 are identical
— active site of E1 different to accommodate different-sized substrates




The Citric Acid Cycle: The o-Keto-
Glutarate Dehydrogenase Complex
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The Citric Acid Cycle

Citrate Synthase \/ .

Step 1: C-C bond formation between acetate (2C) and

oxaloacetate (4C) to make citrate (6C)

Isocﬁgg'gaeﬁ,dmg on a‘/ + Step 2: Isomerization via dehydration/rehydration
a-ketoglutarate DHC v . Steps 3—4: Oxidative decarboxylations to give 2 NADH
+ Step 5: Substrate-level phosphorylation to give GTP
+ Step 6: Dehydrogenation to give FADH,
+ Step 7: Hydration
+ Step 8: Dehydrogenation to give NADH
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Clinical Correlations

Glycogen Storage Diseases: Inborn errors in metabolism

Pompe is from a lack of maltase (a-1-4 glucosidase) in liver
lysosomes, where glycogen will accumulate. Leads to death
in first months after birth.

Cori is from lack of debranching enzyme. Glycogen
accumulates and liver enlargens (hepatomegaly). Also have
fasting hypoglycemia.

McArdle is from the absence of muscle phosphorylase.
Leads to difficulty in muscle use; cramps, fatigue. Less
muscle glycolysis leads to lower levels of lactic acid in the
blood. Muscles are damaged and patients become debilitated.

Clinical Correlations
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Clinical Correlations

GAPDH: Arsenic poisoning and superoxide

Arsenate (HAsO4>) can substitute for P; in biochemical reactions. But,
the esters formed from arsenate are unstable and readily hydrolyze.

For the GAPDH reaction, the 1-arsenyl-2-phospho glycerate degrades to
3-phosphoglycerate without production of ATP. Therefore, glycolysis
does not net any ATP production.

. . . I
Arsenite (AsO,") is more toxic. It kills any (CH,).C—enzyme
+ASO,” +H*

enzyme that contains lipoic acid:

Superoxide (*O,") overproduction can come
from over-exposure to high blood glucose,
especially in retina, kidney, and peripheral
neurons.* This “reactive-oxygen species”
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